Frequency Domain Analysis and Design of Nonlinear Systems Based on Volterra Series Expansion A Parametric Characteristic Approach Understanding Complex Systems

Practical Iterative Learning Control with Frequency Domain Design and Sampled Data Implementation

Signal Processing and Data Analysis

Introduction to state-space methods covers feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; shaping the dynamic response; more. 1986 edition.

Perspectives in Adaptive Systems

This book provides new insight on the problem of closed-loop performance and oscillations in discontinuous control systems, covering the class of systems that do not necessarily have low-pass filtering properties. The author provides a practical, yet rigorous and exact approach to analysis and design of discontinuous control systems via application of a novel frequency-domain tool: the locus of a perturbed relay system. Presented are a number of practical examples applying the theory to analysis and design of discontinuous control systems from various branches of engineering, including electro-mechanical systems, process control, and electronics. Discontinuous Control Systems is intended for readers who have knowledge of linear control theory and will be of interest to graduate students, researchers, and practicing engineers involved in systems analysis and design.

Computer Aided Design of Wire Structures

This book provides new insight on the problem of closed-loop performance and oscillations in discontinuous control systems, covering the class of systems that do not necessarily have low-pass filtering properties. The author provides a practical, yet rigorous and exact approach to analysis and design of discontinuous control systems via application of a novel frequency-domain tool: the locus of a perturbed relay system. Presented are a number of practical examples applying the theory to analysis and design of discontinuous control systems from various branches of engineering, including electro-mechanical systems, process control, and electronics. Discontinuous Control Systems is intended for readers who have knowledge of linear control theory and will be of interest to graduate students, researchers, and practicing engineers involved in systems analysis and design.

Control System Analysis & Design in MATLAB and SIMULINK

Introduction to Circuit Analysis and Design takes the view that circuits have inputs and outputs, and that relations between inputs and outputs and the terminal characteristics of circuits at input and output ports are all-important in analysis and design. Two-port models, input resistance, output impedance, gain, loading effects, and frequency response are treated in more depth than is traditional. Due attention to these topics is essential preparation for design, provides useful preparation for subsequent courses in electronic devices and circuits, and eases the transition from circuits to systems.

Nonlinear Frequency Domain Analysis and Design of Vehicle Suspension Systems

Presents simulation techniques that substantially increase designers' control over the oscillation in autonomous circuits. This book facilitates a sound understanding of the free-running oscillation mechanism, the start-up from the noise level, and the establishment of the steady-state oscillation. It deals with the operation principles and main characteristics of free-running
and injection-locked oscillators, coupled oscillators, and parametric frequency dividers. Analysis and Design of Autonomous Microwave Circuits provides: An exploration of the main nonlinear-analysis methods, with emphasis on harmonic balance and envelope transient methods. Techniques for the efficient simulation of the most common autonomous regimes. A parametric characteristic approach understanding complex systems.

A Weighting Sequence Approach to the Analysis and Design of Multivariable Control Systems

"Control System Analysis & Design in MATLAB and SIMULINK" is blueprinted to solve undergraduate control system engineering problems in MATLAB platform. Unified view of control system fundamentals is taken into account in the text. One key aspect of the text is the presentation of computing and graphing materials in a simple intuitive way. Many advances in virtual implementation on control systems have been seen in the past decade. The text elucidates the web of concepts underpinning these advances. Self-working out illustrations and end-of-chapter exercises enthruse the reader a checkup on thorough understanding. The comprehensive introduction will benefit both undergraduates and graduates studying control system and engineering. Also researchers in the field can have the text as reference.

Advances in Applied Nonlinear Dynamics, Vibration and Control - 2021

This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRR concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain. The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRRs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRRs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis and design method. Based on the parametric characteristic approach, nonlinear influence in the frequency domain can be investigated with a novel insight, i.e., alternating series, which is followed by some application results in vibration control. Magnitude bounds of frequency response functions of nonlinear systems can also be studied with a parametric characteristic approach, which result in novel parametric convergence criteria for any given parametric nonlinear model whose input-output relationship allows a convergent Volterra series expansion. This book targets those readers who are working in the areas related to nonlinear analysis and design, nonlinear signal processing, nonlinear system identification, nonlinear vibration control, and so on. It particularly serves as a good reference for those who are studying frequency domain methods for nonlinear systems.

Discontinuous Control Systems

This book is on the iterative learning control (ILC) with focus on the design and implementation. We approach the ILC design based on the frequency domain analysis and address the ILC implementation based on the sampled data methods. This is the first book of ILC from frequency domain and sampled data methodologies. The frequency domain design methods offer ILC users insights to the convergence performance which is of practical benefits. This book presents a comprehensive framework with various methodologies to ensure the learnable bandwidth in the ILC system to be set with a balance between learning performance and learning stability. The sampled data implementation ensures effective execution of ILC in practical dynamic systems. The presented sampled data ILC methods also ensure the balance of performance and stability of learning process. Furthermore, the presented theories and methodologies are tested with an ILC controlled robotic system. The experimental results show that the machines can work in much higher accuracy than a feedback control alone can offer. With the proposed ILC algorithms, it is possible that machines can work to their hardware design limits set by sensors and actuators. The target audience for this book includes scientists, engineers and practitioners involved in any systems with repetitive operations.

Frequency Domain Analysis and Design of Nonlinear Systems with Application in Chemical Engineering

Over the past decade, considerable effort has been devoted to the analysis and design of feedback controllers for systems characterized by uncertain dynamic descriptions, and both frequency-domain and time-domain techniques have been produced by these studies. In this document, additional aspects of the analysis and design problems are investigated. Techniques are derived to enhance the frequency-domain analysis of perturbed systems and to generalize the time-domain concept of self-tuning control to multivariable systems. The first part of this document addresses the problem of generating an accurate description of frequency response uncertainty for systems whose models are generated via system identification. Finite weighting sequence models are found to be particularly useful for this purpose. Techniques are derived to quantify the variability of the frequency response estimates associated with the given model, to identify the optimal truncation level for the specified identification test, and to assess the impact of the bias introduced by truncation. The second part considers the use of multivariable weighting sequences in the development of on-line computer-implemented control algorithms.

Frequency-Domain Analysis and Design of Distributed Control Systems
Passive solar design techniques are becoming increasingly important in building design. This design reference book takes the building engineer or physicist step-by-step through the thermal analysis and design of passive solar buildings. In particular it emphasises two important topics: the maximum utilization of available solar energy and thermal storage, and the sizing of an appropriate auxiliary heating/cooling system in conjunction with good thermal control. Thermal Analysis and Design of Passive Solar Buildings is an important contribution towards the optimization of buildings as systems that act as natural filters between the indoor and outdoor environments, while maximizing the utilization of solar energy. As such it will be an essential source of information to engineers, architects, HVAC engineers and building physicists.

Advances on Analysis and Control of Vibrations

This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain. The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRFs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRFs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis and design method. Based on the parametric characteristic approach, nonlinear influence in the frequency domain can be investigated with a novel insight, i.e., alternating series, which is followed by some application results in vibration control. Magnitude bounds of frequency response functions of nonlinear systems can also be studied with a parametric characteristic approach, which result in novel parametric convergence criteria for any given parametric nonlinear model whose input-output relationship allows a convergent Volterra series expansion. This book targets those readers who are working in the areas related to nonlinear analysis and design, nonlinear signal processing, nonlinear system identification, nonlinear vibration control, and so on. It particularly serves as a good reference for those who are studying frequency domain methods for nonlinear systems.

Discontinuous Control Systems

Thoroughly classroom-tested and proven to be a valuable self-study companion, Linear Control System Analysis and Design: Sixth Edition provides an intensive overview of modern control theory and conventional control system design using in-depth explanations, diagrams, calculations, and tables. Keeping mathematics to a minimum, the book is designed to be accessible to undergraduate students, engineers, researchers, and professionals in the control community. This new edition includes a new chapter on non-linear dynamic systems, as well as an appendix listing MATLAB functions for optimizing control system analysis and design. Over 75 percent of the problems presented in the previous edition have been revised or replaced.

Damping System Designs Using Nonlinear Frequency Analysis Approach

New results, fresh ideas and new applications in automotive and flight control systems are presented in this second edition of Robust Control. The book presents parametric methods and tools for the simultaneous design of several representative operating conditions and several design specifications in the time and frequency domains. It also covers methods for robustness analysis that guarantee the desired properties for all possible values of the plant uncertainty. A lot of practical application experience enters into the case studies of driver support systems that avoid skidding and rollover of cars, automatic car steering systems, flight controllers for unstable aircraft and engine-out controllers. The book also shows the historic roots of the methods, their limitations and research needs in robust control.

Digital Filter Design and Realization

Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The resonant spectrum approach and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems. NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help understand the dynamics of their systems.

Analysis and Control of Nonlinear Systems with Stationary Sets

Vibration is a phenomenon that we can perceive in many systems. Their effects are as diverse as the personal discomfort that can produce the unevenness of a road or the collapse of a building or a bridge during an earthquake. This book is a compendium of research works on vibration analysis and control. It goes through new methodologies that help us understand and
mitigate this phenomenon. This book is divided into two sections. The first one is devoted to new advances on vibration analysis while the second part is a series of case studies that illustrate novel techniques on vibration control. The applications are varied and include areas such as vehicle suspension systems, wind turbines and civil engineering structures.

A Frequency Domain Approach to the Design and Analysis of Linear Multivariable Systems

Candolf (computer Analysis of Networks with Design Orientation in the Frequency Domain).

This book presents digital signal processing theories and methods and their applications in data analysis, error analysis and statistical signal processing. Algorithms and Matlab programming are included to guide readers step by step in dealing with practical difficulties. Designed in a self-contained way, the book is suitable for graduate students in electrical engineering, information science and engineering in general.

Analysis and Design of Autonomous Microwave Circuits

The main purpose of this thesis focuses on the investigation of the frequency domain analysis and design approaches for nonlinear damping systems. With the development of modern mechanical and civil engineering structures, the vibration control has become a more and more important problem for the structural system protection. As typical energy dissipation equipments for the structural vibration control purpose, damping devices have been designed and fitted in many modern structural systems. Traditional frequency domain design methods for linear damping devices have been widely studied by engineers and applied in engineering practice, where the system output frequency response is equal to the input spectrum multiplied by the system frequency response function. Recently, nonlinear damping devices have received more and more attentions and been applied in practical engineering systems to overcome the limitations of linear damping devices in the system vibration control. The analysis and design of nonlinear systems, however, are far more complicated than the design of linear systems. The frequency domain design methods for linear systems cannot easily be extended to the nonlinear cases. Traditional frequency domain analysis and design methods for nonlinear systems involve complicated mathematics, consequently, difficult to be applied in practice. Therefore, more effective frequency domain analysis and design approaches should be developed to facilitate the design of nonlinear damping devices and to satisfy the demand for better vibration performance in practical engineering structural systems. Motivated by this requirement, several new frequency domain analysis and design approaches have been proposed for the analysis of the performance and the design of the characteristic parameters of nonlinear viscous damping devices. The main contributions of the research work can be summarized as follows. (1) Based on the Ritz-Galerkin method, a new method for the evaluation of the transmissibility of nonlinear SDOF viscously damped vibration systems under general harmonic excitations is derived. The effects of damping characteristic parameters on the system transmissibility are investigated. The results reveal that properly designed nonlinear fluid viscous dampers can produce more ideal vibration control over a wide frequency range. (2) The Output Frequency Response Function (OFRF) is a concept recently proposed at Sheffield for the analysis and design of nonlinear systems in the frequency domain. Based on the OFRF, a frequency domain analysis and design approach has been developed to study the impact of additional nonlinear viscous damping devices on the vibration isolation behaviours of MDOF viscously damped vibration systems, and to design the characteristic parameters of additional damping devices for a desired system vibration performance. (3) Based on the OFRF, a new concept called Vibration Power Loss Factor (VPLF) is proposed to evaluate the effects of additional fluid viscous dampers on the vibration control of structural systems subjected to general loading excitations. A novel VPLF and OFRF based approach is then proposed for the design of additional fluid viscous dampers to achieve a desired vibration performance when the structural systems are subject to general loading excitations. The advantages of using different types of additional fluid viscous dampers in structural systems for the vibration control purpose are also investigated. (4) Using the Finite Element (FE) model analyses, the effectiveness of the application of the proposed OFRF and VPLF based frequency domain design approaches in the design of additional fluid viscous dampers for the vibration control in more complicated structural systems has been verified. The frequency domain analysis and design approaches proposed in this thesis provide a significant basis and important guidelines for the analysis and design of a wide class of nonlinear viscously damped engineering structural systems. The results reveal the advantages of additional nonlinear viscous damping devices in the system vibration control and have considerable significance for the design of the damping characteristic parameters to achieve a desired system vibration performance.

Process Control Engineering

"This book provides an introduction to discrete-time and discrete-frequency signal processing, which is rapidly becoming an important, modern way to design and analyze electronics projects of all kinds. It presents discrete-signal processing concepts from the perspective of an experienced electronics or radio engineer, which is especially meaningful for practicing engineers, technicians, and students."

--- Publisher's description.

Thermal Analysis and Design of Passive Solar Buildings

Control Systems

Analysis, design, and realization of digital filters have experienced major developments since the 1970s, and have now become an integral part of the theory and practice in the field of contemporary digital signal processing. Digital Filter Design and Realization is written to present an up-to-date and comprehensive account of the analysis, design, and realization of digital filters. It is intended to be used as a text for graduate students as well as a reference book for practitioners in the field. Prerequisites for this book include basic knowledge of calculus, linear algebra, signal analysis, and linear system theory. Technical topics discussed in the book include: Discrete-Time Systems and z-TransformationStability and Coefficient SensitivityState-Space ModelsFIR Digital Filter DesignFrequency-Domain Digital Filter DesignTime-Domain Digital Filter DesignInterpolated and Frequency-Response-Masking FIR Digital Filter DesignComposite Digital Filter DesignFinite Word Length EffectsCoefficient Sensitivity Analysis and MinimizationError Spectrum ShapingRoundoff Noise Analysis and MinimizationGeneralized Transposed
Direct-Form II Block-State Realization

Multivariable Frequency Domain Techniques in the Analysis and Design of Power System Controllers

This text is about methods used for the computer simulation of analog systems. It concentrates on electronic applications, but many of the methods are applicable to other engineering problems as well. This revised edition (1st, 1983) encompasses recent theoretical developments and program-writing techniques.

Linear Control System Analysis and Design with MATLAB®, Sixth Edition

This report describes the operation and use of CANFD (Computer Analysis of Networks with Design Orientation in the Frequency Domain), a frequency domain analysis program, for linear time invariant networks. The networks may contain dependent and independent sources of all types, capacitances, resistances and inductances. The network analysis problem is to obtain the complex branch currents and voltages, by solving a set of simultaneous complex algebraic equations derived from the complex branch relations and Kirchhoff's voltage and current laws.

The Whipster Whipt

As an introduction to the integral equation analysis of wire structures, this book and enclosed software packages contain the user friendly version of the boundary element software for modelling the straight thin wire arrays in both frequency and time domain.

Discrete-Signal Analysis and Design

Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion

This book focuses on the development of three novel approaches to build up a framework for the frequency domain analysis and design of nonlinear systems. The concepts are derived from Volterra series representation of nonlinear systems which are described by nonlinear difference or differential equations. Occupying the middle ground between traditional linear approaches and more complex nonlinear system theories, the book will help readers to have a good start to analyse and exploit the nonlinearities. Analysis and Design of Nonlinear Systems in the Frequency Domain provides clear illustrations and examples at the beginning and the end of each chapter, respectively, making it of interest to both academics and practicing engineers.

Digital Signal Processing: Theory And Practice

"Computer-aided instruction technology has been used here as an educational tool. A user-friendly computer software package, "Process Control Engineering Teachware" (PCET) is available on a diskette" - Pref.

Frequency Domain Analysis and Design for MIMO OFDM Communication System

Distillation Dynamics

Nonlinear systems with stationary sets are important because they cover a lot of practical systems in engineering. Previous analysis has been based on the frequency-domain for this class of systems. However, few results on robustness analysis and controller design for these systems are easily available. This book presents the analysis as well as methods based on the global properties of systems with stationary sets in a unified time-domain and frequency-domain framework. The focus is on multi-input and multi-output systems, compared to previous publications which considered only single-input and single-output systems. The control methods presented in this book will be valuable for research on nonlinear systems with stationary sets.

Control System Design

This concise and clear text is intended for a senior undergraduate and graduate level, one-semester course on digital signal processing. Emphasis on the use of the discrete Fourier transform (the heart of practical digital signal processing) and comprehensive coverage of the design of commonly used digital filters are the key features of the book. The large number of visual aids such as figures, flow graphs, and tables makes the mathematical topic easy to learn. The numerous examples and the set of MATLAB programs (a supplement to the book) for the design of optimal equiripple FIR digital filters help greatly in understanding the theory and algorithms.

Solution Manual to the questions (as a separate volume) is available to instructors or lecturers.

Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion
Introduction to Circuit Analysis and Design

This book presents a unified frequency-domain method for the analysis of distributed control systems. The following important topics are discussed by using the proposed frequency-domain method: (1) Scalable stability criteria of networks of distributed control systems; (2) Effect of heterogeneous delays on the stability of a network of distributed control system; (3) Stability of Internet congestion control algorithms; and (4) Consensus in multi-agent systems. This book is ideal for graduate students in control, networking and robotics, as well as researchers in the fields of control theory and networking who are interested in learning and applying distributed control algorithms or frequency-domain analysis methods.

Design and Analysis of Frequency Domain Experiments

System Identification

Computer Methods for Circuit Analysis and Design

Analysis and Design of Nonlinear Systems in the Frequency Domain

Frequency-domain Self-adjoint S-parameter Sensitivity Analysis for Microwave Design

Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.

Nonlinear System Identification

Copyright code: 543800334effb992208e8d264142f559